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Roflamycoin Spiroacetal
Receied Naoember 1, 1996 Figure 1. Roflamycoin spiroacetal formed irreversibly on treatment

- . of natural roflamycoin with mild acid.
Roflamycoin is an unusual member of the polyene macrolide

antibiotics as it is the only oxopolyene macrolide that has been Scheme 1

shown to form well-defined ion channélsMost oxopolyene Li“~0"Ph
macrolides are simple membrane disrupters, and the other well- 1. BRSOtz puen OBn
characterized ion-channel forming polyenes belong to the W 2. Bulj, s g I
mycosamine-containing polyene macrolide antibiotics like nys- O O Bugn, SnBug (_J o oH
tatin and amphotericin B. Roflamycoin was isolated from 1 U’ 56% 3
Streptomyces roseoflas as an antifungal agent and initially
named flavomycoir. The flat structure was reported in 1981,
; . . . ) 1.2,2-DMP, CSA

and the absolute configuration was determined in 1994 using 2.Buli, DMPU 0Bn
the 13C acetonide method.Prior to the stereochemical elucida- Br {7 st
tion, both Lipshut? and Rychnovsky had developed partial /Y\O/\Br oxo (L oxo
syntheses of roflamycoin stereoisomers, but no complete OxC  60% 5
synthesis of roflamycoin or any stereoisomer has been described.
Reported herein is the first total synthesis of natural roflamycoin. 1. Hg(ClOg),, CaCOg| . 2 OBn

Roflamycoin presents several challenges to synthetic chemists. 2. CpzTiMe A Br 6. 6 (o b & M

In common with other oxopolyene macrolides like mycoficin 3. 0s0,, NMO < 07\ Pa
and roxaticir? roflamycoin contains a stereochemically complex 4.2,2-DMP, CSA 6

polyol chain and a polyene segment that is sensitive both to 67%
light and to many chemical reagents. Unlike these simpler

. ; h . Scheme 2
oxopolyenes, roflamycoin contains a hemiacetal that is trans- 1. 9-BBN, THF;
formed to a spiroacetalre versibly on treatment with mild acid Vinyl bromide,
(Figure 1)> All of the synthetic work in this area makes use )\l/lv/ (PhaP)aPd, aq. NaOH )\l/l\/\
of acid labile protecting groups to block the many hydroxyl OBn 2. 004, NMO; Nalo,
groups in the target, so a late-stage acid-catalyzed deprotection 7 0%
would appear to be unavoidabfe.A two-stage deprotection
strategy was developed for the synthesis of roflamycoin in which 1. 'Ipc,B-allyl; NaOH, H,0,
the hydroxyl groups were to be deprotected in the penultimate 2 TBSOTY. Lutidine, 75% )\l/l\/\lA
step and the ketone would be liberated in the final step by neutral 3. 0504, NMO; NalO,, 76% Bn oTBS
periodate cleavage of a 1,2-diol. Model studies were successful,
and this deprotectic_m strategy was incorporated into the synthetic H,C=C(OMe)OTMS,
plan for roflamycoin. i i Carreira's Catalyst, /I\(l\/YY\COZMe
Convergent synthesis of the protected roflamycoin paolyol 84% OBn TBSO OTMS

used cyanohydrin acetonide couplitlgand optically pureC,-
symmetric electrophilés previously developed in our group.
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of the C11+-C22 fragment, but the dithiane was not an
appropriate protecting group for the C17 ketone. Dithiéne
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OR TBSO

- | o
16

MeOH-H,0,

OR

Li/ NH,
69%

14 (X=CN, R =Bn)
15 (X=H, R=H)

1. BusSn(CH),OEt,

CHO "By, MgBr,

2. MsCl, Et3N, -45 °C
3. Repeat 1 & 2.
49%

Dowex 50 W-X1,
MeOH, 57%

OH OH OH OH OH OH OH

Roflamycoin

yield. Both nitriles were replaced by axial hydrogen atoms,
and the benzyl groups were removed in this single step. Diol
15 was next converted into the macrocyclic pentadi@
Acylation of both alcohols with diethyl phosphonopropionic

generated as a 2:1 mixture of stereoisomers, both of which acid, followed by selective hydrolysis of the primary ester and

would be viable precursors to roflamycoin. To facilitate NMR

Dess-Martin oxidation gave aldehyd#6. Aldehydel6 was

analysis, the mixture was separated and the major isomer wasconverted to a tetraenal by addition of the Grignard reagent

used in subsequent steps.

derived from Wollenberg’s 1-(tributylstannyl)-4-ethoxybutadi-

The C27-C37 segment was prepared as outlined in Scheme ene?? followed by mesylation and solvolysis of the resulting

2. Benzyl ethei7 was prepared by enantioselective crotylborane
addition to isobutyraldehyde followed by benzylatign.A
Suzuki homologatiol¥ and oxidation gave aldehy@hat was
coupled with Brown’s IpgB-allyl reagent® Protection and
oxidation gave aldehyd& The final relevant stereogenic center
in 11 could be introduced by another allylborane addition, but
it was more efficient to use Carreira’s enantioselective aldol
reactiof® because it led directly to thg-silyloxy ester10.
DIBAL-H reduction, cyanohydrin formation, and acetonide
protection gave the C27C37 segmentll as a mixture of

secondary alcohd! Repeating the Wollenberg homologation
sequenc® gave tetraendl7, and intramolecular phosphonate
Wittig cyclization gave the pentaerdd in 44—51% yield as a
single alkene isomé® The key deprotection steps proceeded
uneventfully. Acid-catalyzed deprotection gave the poly@l
and periodate cleavage of the 1,2-diol gave roflamycoin.
Synthetic and natural roflamycoin were found to be identical
by TLC mobility and by!H NMR, FAB MS, UV, and reversed-
phase HPLC analysis.

The longest linear sequence in the synthesis of roflamycoin

cyanohydrin stereoisomers that was used without separation.is 24 steps starting from isobutyraldehyde. This highly con-

Roflamycoin was assembled as illustrated in Scheme 3.

Alkylation of bromide6 with 2.5 equiv of the anion of nitrile
12 gave the alkylated nitrile in 85% yield. Compoub2! can

be used in the iterative construction of polyol chains by
alkylation followed by conversion of the TIPS-protected alcohol
to an alkyl iodide?! Deprotection of the TIPS alcohol and alkyl
iodide formatiod? gave 13 in excellent yield. Alkylation of
the anion of the C27#C35 segmeni1 with iodide 13 gavel4

in 70% yield based ol3. Reductive decyanation gave the
protected roflamycoin polyd5 as a single stereoisomer in 69%

vergent route to natural roflamycoin is well-suited to the
preparation of sterecisomers and other analogtes.
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